Làm việc với Bệnh viện Bệnh nhiệt đới và Đơn vị Nghiên cứu lâm sàng Đại học Oxford (OUCRU) tại TPHCM, sinh viên ngành Cử nhân Kỹ sư phần mềm RMIT Phùng Minh Tuấn đã phát triển thành công một tập hợp đầu cuối để nhận diện chữ viết trên bản quét bệnh án tiếng Việt. Đây được cho là công nghệ giàu tiềm năng hỗ trợ việc đẩy mạnh số hóa bệnh án mà Chính phủ triển khai từ năm 2019.
Minh Tuấn cho biết, công nghệ nhận diện chữ viết hiện nay đã tiến bộ rất nhiều nhưng hầu hết những phương pháp hiện có được phát triển để đọc tiếng Anh và có rất ít hay gần như không có phần mềm riêng cho tiếng Việt. Nhận diện chữ viết tay tiếng Việt về cơ bản thách thức hơn với tiếng Anh nhiều vì sự hiện diện của các lớp ký tự, âm điệu và dấu câu phức tạp. Phải mất hơn 3 tháng thử - sai để tìm ra cách hiệu quả nhất có thể chuyển hình ảnh của một bệnh án giấy thành phiên bản điện tử.
Sinh viên này cho hay: “Chúng tôi phải áp dụng quy trình giảm nhiễm, chia nhỏ chữ viết xuống cấp độ từ và áp dụng mô hình ngôn ngữ Bigram để tăng xác suất chỉnh sửa có thể cho những từ chung quanh. Quan trọng hơn là phối hợp và thực hiện một cấu trúc học máy bao hàm mạng lưới thần kinh nhân tạo ResNet để chiết xuất hình dạng chữ và BiLSTM để lên mẫu tần suất chữ và CTC cho nhiệm vụ sao chép cuối cùng. Tại điểm này, tín hiệu đầu ra cuối cùng dạng chuỗi song hành cùng bộ từ vựng sẽ giúp kết quả chính xác hơn”.
TS Đinh Ngọc Minh và sinh viên Phùng Minh Tuấn. |
Giảng viên Khoa Khoa học và Công nghệ tại Đại học RMIT đồng thời là thầy trực tiếp hướng dẫn Tuấn - TS Đinh Ngọc Minh cho biết, tập hợp có thể đóng vai trò thiết yếu hỗ trợ công cuộc số hoá các cơ sở y tế và bệnh viện ở Việt Nam, giúp họ sẵn sàng hơn trong việc chuyển sang sử dụng hệ thống quản lý bệnh án điện tử hiện đại. Với sự trợ giúp của máy móc trong xử lý toàn bộ bệnh án, các cơ sở y tế có thể dần chuyển sang hệ thống điện tử mà không phải thay đổi quy trình đột ngột. Hệ thống này còn cho phép các cơ sở y tế ở vùng hẻo lánh hay cán bộ y tế không có điều kiện tiếp cận máy tính tiếp tục với hệ thống giấy tờ hiện tại và có thể số hoá dễ dàng sau đó.
TS Đinh Ngọc Minh tin rằng, việc có thể chia sẻ bệnh án của bệnh nhân dễ dàng giữa các phòng ban sẽ giúp giảm bớt những xét nghiệm không cần thiết và tối ưu hoá điều trị, và dần cải thiện chất lượng chăm sóc y tế. Và quan trọng nhất là công trình của Tuấn có thể tạo nên bộ dữ liệu ghi chép y khoa số hoá cho các giải pháp học máy y khoa tiềm năng khác nhau.